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Abstract—Models of rectangular and axially symmetric resonator slow-wave structures, which are built using
transmission matrix for determining the characteristics of the slow-wave structures in different operation
modes, are investigated. Elements of the transmission matrix are determined from the results of 3D simula-
tion with the use of the HFSS software. In the analysis of the dispersion characteristics, slow-wave structures
with two microwave propagation channels are studied and simulated using a 4×4 transmission matrix.
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INTRODUCTION
Broadening of the application range of micro-

wave electromagnetic fields gave rise to a new set of
microwave generators, converters, filters, transmis-
sion lines, and amplifiers; computer techniques for
their design and calculation have evolved. In addi-
tion, the advent of new microwave devices extends
the applicability limits of microwave technologies
and allows their use in various fields of science and
engineering.

The required heat sink in high- and intermediate-
power microwave amplifiers is usually ensured by all-
metal resonator slow-wave structures (SWSs). These
structures are three-dimensional and, since the design
of SWS-based devices with the help of rigorous elec-
trodynamic programs requires much computational
resources, it is important to develop simple and preci-
sion models of resonator SWSs.

1. MULTIPOLE REPRESENTATION 
OF A CELL OF THe RESONATOR 

SLOW-WAVE STRUCTURE
An all-metal resonator SWS is a transmission line

in the form of a chain of identical cells. The cells are
connected by waveguide channels conventionally
divided into input and output. Since the investigated
SWSs are periodic, the distance between the input and

output cross sections of a cell is equal to SWS period L
and the number of input channels is always equal to
the number of output channels.

Total tangential fields  and  in
the input and output cross sections are nothing but
superpositions of an infinite number of modes corre-
sponding to the waveguide channel under study.

According to [1], we have

(1)

where en(α)(x, y) and hn(α)(x, y) are the known vector
functions of the electric and magnetic field distribu-
tions for the nth mode in the channel cross section,
which depend on transverse coordinates x and y;
n(α) is the number of the eigenmode in the channel
with number α; and  and  are the complex
amplitudes of the functions of transverse vectors,
which depend on longitudinal coordinate z.

In real calculations with the use of expansions (1),
only a finite number of terms is used. Then, in each

1 The results of this study were reported at the 2nd All-Russia
Conference on Problems of Microwave Electronics, Moscow
Institute of Electronics and Mathematics, Higher School of
Economics (National Research University), Moscow, October
26−28, 2015.
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channel with cross section Sα, N eigenmodes are
summed (n = 1, 2, …. N):

(2)

Since the SWS cell is a passive linear object, com-
plex amplitudes  and  at its input and out-
put are related by a linear operator determined by
transmission matrix АN [2].

The relation between the field components at both
boundaries is specified in the form

(3)

where  and  are vectors compred of the com-

plex amplitudes in cross sections  and

is the linear matrix operator, which allows determining
different operation modes of the SWS under study. If
the elements of matrix operator АN are known, the
SWS becomes completelt formalized and all its ther-
modynamic characteristics can be determined.

The tangential field components in cross sections
 specified by Eq. (2) completely determine the

field of the normal mode over the entire cell volume.
In cross sections  and , they are related by the
Floquet conditions [3]

(4)

where hn is the propagation constant of the nth normal
mode in a cell with period L. Condition (4) for the
vectors of complex amplitudes is written with regard
to (2) as

(5)

We transform Eq. (5) by excluding  and  with
regard to (3) and arrive at

(6)
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Equation (6) is the algebraic formulation of the
problem of eigenmodes of the investigated SWS in
modeling its cell by a 2N-pole described by linear
matrix operator AN.

As is known, a nontrivial solution of system of
equations (6) exists under the condition [4]

(7)

where  are the eigenvalues of trans-
mission matrix AN, which allow us to determine prop-
agation constants hn of the 2N-pole simulating the
SWS cell, and Е is the identity matrix.

According to [5], the obtained expression is, in
fact, the dispersion equation for the normal modes of
the 2N-pole. The electrodynamic expression of the
dispersion equation ϕ = f(ω) can be obtained from (7),
since elements of matrix operator AN depend on fre-
quency ω.

The eigenvectors of transmission matrix AN

together with Eq. (2) determine the transverse electro-
magnetic fields corresponding to the eigenmodes in
the 2N-pole simulating the SWS cell and can be used
to determine the characteristic impedance of the
transmission line.

Thus, the electrodynamic characteristics of the
SWS can be determined from the known elements of
transmission matrix AN obtained by means of formal-
ization of the cell.

In turn, elements of the transmission matrix can be
found by solving a number of electrodynamic problems
under certain boundary conditions specified in the input
and output waveguide channels. Methods for solution of
these problems are considered in the next section.

2. METHOD FOR DETERMINING 
THE ELEMENTS OF THE MATRIX OPERATOR 

OF THE 2N-POLE DESCRIBING 
THE CHARACTERISTICS 

OF THE SLOW-WAVE STRUCTURES

The finite-element method (FEM) is one of the
most powerful and universal instruments for numeri-
cal solution of the equations of mathematical physics,
which can be used to solve the electrodynamic prob-
lems in time and frequency domains [6].

The method is based on partitioning the calculated
regions into many subregions (the so-called finite ele-
ments (FEs)). The field in each element is represented
by means of expansion in terms of a certain system of
linearly independent finite functions. These functions
are nonzero only within the element volume. The
shape of FEs can vary; however, for any element
shape, the calculated region should be densely covered
by a set of FEs without overlaps and gaps. This condi-
tion is satisfied, e.g., by tetrahedra, hexahedra, octa-
hedra, and prisms. In the regions of the expected fast-

det( ) 0,N N− λ =A Е

( )expN
nih Lλ = −
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est variation of the electromagnetic field, the finite-
element grid can have irregularities and clusterings.

As a rule, the electromagnetic field in FEs is
approximated by polynomials of different orders; in
this case, the expansion coefficients are equal to the
values of the investigated field at the FE vertices or on
FE edges. A system of equations for these coefficients
can be formed using the variational technique; solving
this system, one can obtain the desired potential
strengths at the vertices or on the edges, which allows
approximate recovering of the field over the entire
investigated area.

Relative complexity of the algorithm and large
memory volume required for solving the problem by
the FEM are compensated by the possibility of suffi-
ciently exact approximation of the boundaries and
simulation of the fields in the regions filled with inho-
mogeneous and anisotropic media, as well as by the
relatively small time required for solving the problem.

This method has many modifications; therefore, to
solve a specific class of problems, its optimum imple-
mentation can be chosen.

This method was used in the HFSS (High Fre-
quency Structures Simulation) software, which con-
tains two basic techniques for calculating three-
dimensional models (Eigenmode Solution and Driven
Modal Solution).

Simulation with the HFSS software includes spec-
ification of the so-called primitives and subsequent
operations with them. The primitives can be two- and
three-dimensional. The two-dimensional primitives
are line, rectangle, circle, arbitrary polygon, and
ellipse. The three-dimensional primitives are cube,
parallelepiped, cylinder, cylinder with an arbitrary
number of directrices, cone, sphere, and torus. A
primitive is simulated in the three-dimensional space
using cursor control keys; then, its lengths along three
coordinate axes and coordinates of its reference point
can be changed. This allows any variations in the sizes
of a primitive and its displacement. In addition, a
primitive can be copied, rotated by a certain angle, and
specularly reflected. In addition, there is a special tool
for rounding the primitive angles. The primitives can
be combined, subtracted, or crossed. Using these
operations, one can form a complex three-dimensional
model, e.g., the model of a periodic SWS, from simple
primitives. This model is built from several cylinders and
parallelepipeds, which should be correctly subtracted
from each other. Then, individual elements are com-
bined into one cell, which is copied 12 times; after that,
each second cell should be rotated by 180° to obtain the
correct position of connecting resonator sections. When
the three-dimensional model is built, it is necessary to
choose the material for its implementation. It should be
noted that not the entire SWS is simulated, but only its
part where the electromagnetic field propagates. In our
case, the field propagates in vacuum; therefore, we spec-
ify vacuum as the material for our model. The next stage
is specification of the boundary conditions. On default,
the model boundary is a perfect metal wall that does not
transmit the electromagnetic field. This condition com-
pletely meets the requirements of the problem under
investigation. Note that sometimes magnetic walls trans-
parent for the field can be specified. This is used, e.g., to
decrease the calculation time when the specified model is
symmetric.

The calculation using the Driven Modal technique
suggests simulation of one cell of the system under
study (Figs. 1a and 1b); in this case, the input and out-
put system ports should be specified (this method is
universal and can be used not only in calculation of the
SWS). The port is a point where the specified three-
dimensional model is connected to an infinite wave-
guide through which the input signal is supplied and
the output signal is extracted. Along with the ports, it
is necessary to specify the frequency range in which
the system will be calculated and the step of variation
in the calculation frequency within this range. When
all these conditions are specified, the system is calcu-

Fig. 1. (а) Rectangular and (b) axially symmetric slow-
wave structures: (1) first and (2) second ports.
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lated as in the Eigenmode technique, but, in contrast
to the latter, after partitioning in tetrahedra, the calcu-
lation is made separately for each frequency from this
range. As a result, we obtain the scattering matrix (S
matrix) and the Z and Y matrices equivalent to it,
which will be used to calculate the dispersion charac-
teristics of the SWS. Figures 1a and 1b show cells of
rectangular and axially symmetric SWSs obtained by
cutting along the coupling slots.

3. PROGRAM 
FOR PROCESSING OF THE DATA 

OF THREE-DIMENSIONAL SIMULATION
In this study, we investigate resonator SWSs with

two microwave propagation channels, i.e., the SWSs
simulated in the HFSS software by four-port cells.
The initial data are a set of Z-matrices obtained for the
frequency set specified in the HFSS.

Along with standard data input and output stages,
the processing algorithm contains the following stages:

(i) Transformation of the Z matrix to the A matrix.
(ii) Determination of the eigenvalues and eigenvec-

tors of the A matrix.
(iii) Calculation of the dispersion and characteris-

tic impedance of the SWS.
The results of three-dimensional simulation are

processed using the MathCAD software. Let us con-
sider the program that describes the SWS represented
in the form of a four-port network [7].

The system period and the number of frequencies
used in calculation are specified. The period is deter-

mined by longitudinal dimension L of the simulated
cell. The number of frequencies is determined by the
step of variation of the calculation frequency in the
HFSS software. In the MathCAD software, this value
is specified as number of steps N.

A set of frequencies and a set of Z matrices corre-
sponding to these frequencies are chosen from the
table read from the file; in this case,   

        
   and  are the elements of the jth

Z matrix and ωj is the calculated frequency. To trans-
form the Z matrices into equivalent A matrices, we
used the transition matrix (see Appendix). When the
desired А matrix is obtained, we can calculate its
eigenvalues using the function

(8)

The eigenvalues are complex numbers. In this case,
the A matrix dimensionality is 4 × 4; therefore, we
obtain four eigenvalues, which are pairwise complex
conjugate.

The first pair of solutions corresponds to the for-
ward and backward waves propagating along the SWS
slot channel; the second pair corresponds to the waves
propagating along the transit channel. Each eigen-
value of the A matrix has its own eigenvector, which
allows determining voltages and currents in the port
cross sections; the latter parameters, in turn, allow
finding the characteristic impedance of the mode.

The eigenvectors are determined as

(9)

These eigenvectors can be used to determine char-
acteristic impedances of the ports:
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4. ANALYSIS OF DISPERSION 
CHARACTERISTICS OF THE RESONATOR 

SLOW-WAVE STRUCTURES

In this study, we investigate the SWSs shown in
Figs. 1a and 1b. These structures are resonator SWSs
with two microwave propagation channels. The SWS
cells, which can be simulated using the Driven Modal
technique, are formed by cutting the rectangular or
axially symmetric SWSs along the coupling slots.

Calculation of the SWS dispersion characteristics
of the yields four solutions (modes). The first pair of
solutions corresponds to the forward and backward
waves propagating along the SWS slot channel
(Figs. 2а and 3а) and the second pair corresponds to
the transit-channel waves (Figs. 2b and 3b). The phase
shift per the cell in the transit channel is either 0 or π
and can change stepwise by ±π. The wavenumbers of
these waves are complex; the real part determines the
reactive attenuation in the stopbands and the transit
channel (see Fig. 2b). As the transit channel radius
increases, the π-shape of the fundamental dispersion
characteristic shifts toward the low-frequency region
(Figs. 2a and 2b).

Analogous dispersion characteristics were calcu-
lated for the axially symmetric resonator SWSs
(Figs. 3a and 3b). As in the rectangular SWSs, the dis-
persion characteristics of the axially symmetric SWSs
have four solutions (modes). The wave numbers of
these solutions are complex; the real part determines
the reactive attenuation in the stopbands and the tran-
sit channel. The phase shift per one cell in the transit
channel of the axially symmetric SWSs is analogous to
the case of the rectangular SWSs. As the transit chan-
nel radius increases, the fundamental dispersion char-
acteristic shifts toward the low-frequency region
(Figs. 3a and 3b).

Characteristic impedances of the SWS ports are
determined from formulas (10)−(17) and are complex.
The characteristic impedance of the slot channel of
the resonator SWS is presented in Figs. 4a and 4b.
Characteristic impedances of the slot and transit
channels of the axially symmetric SWS are shown in
Figs. 5a and 5b.

As the transit channel radius increases, the charac-
teristic impedance of the slot channel is transformed.
It becomes complex in the passbands and singularities
at their boundaries disappear. Beyond the passbands,
the characteristic impedance remains purely imagi-
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Fig. 2. (a) Slowing factor Nj and (b) reactive attenuation
RNj of a cell of the rectangular resonator SWS formed by
cutting along the coupling slots for transit channel radii
r1 = (1) 0.75 and (2) 2 mm.
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nary and has a limited value. The characteristic
impedance of the transit channel remains complex.

CONCLUSIONS
The results obtained have shown that the account

for the transit channel significantly changes the dis-

persion characteristics of the resonator SWSs, even
for small transit channel radii. The complex value of
the characteristic impedance and the absence of
singularities at the passband boundaries make it
possible to uniformly describe amplification in the
passband and at its boundaries.

Fig. 3. (a) Slowing factor Nj and (b) reactive attenuation RNj of a cell of the axially symmetric resonator SWS formed by cutting
along the coupling slots for transit channel radii r1 = (1) 0.75 and (2) 2 mm.
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APPENDIX

Matrix of transition from impedance matrix Z to transmission matrix A:
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Fig. 4. (solid curves) Real ZRnj and (dashed curves) imaginary ZInj parts of the characteristic impedance of (a) the slot (n = 0.1)
and (b) the transit (n = 2, 3) channels of the rectangular SWS partitioned into cells along the coupling slots for transit channel
radii r1 = (1) 0.75 and (2) 2 mm.
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Fig. 5. (solid curves) Real ZRnj and (dashed curves) imaginary ZInj parts of the characteristic impedance of (a) the slot (n = 0, 1)
and (b) the transit (n = 2, 3) channels of the axially symmetric resonator partitioned into cells along the coupling slots for transit
channel radii r1 = (1) 0.75 and (2) 2 mm.
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